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Abstract

A numerical study has been made of the interaction of the thermal radiation with laminar mixed convection for a

gray ¯uid (a gas that may have particulates in suspension) in a vertical square duct. Using the vorticity-velocity method,

the three-dimensional Navier±Stokes equations and energy equations were solved simultaneously. The integro-di�er-

ential radiative transfer equation was solved by the discrete ordinates method. Results are presented for a wide range of

governing parameters. The e�ects are emphasized of thermal buoyancy and radiative transfer on the development of

velocity and temperature ®elds, the friction factor and the Nusselt number. The results show that radiation signi®cantly

a�ects the total Nusselt number Nut and tends to reduce the buoyancy e�ects. In addition, radiation speeds the de-

velopment of the temperature ®eld. Ó 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

Mixed convection in a vertical duct has been of

special interest recently due to applications such as

solar collectors, heat exchangers, nuclear reactors and

electronic equipment. When convection and radiation

e�ects are of similar importance, separate calculation of

these and superposition without considering their

interaction can result in sign®cant errors. The mo-

mentum, energy and radiation transport equations in

such cases should be solved simultaneously in order to

accurately determine the velocity and temperature ®elds

and heat transfer rates. The present work addresses this

problem.

Much work, both theoretical and experimental, has

been done on mixed-convection heat transfer in in-

ternal ¯ows, as is evident in the review by Jackson et

al. [1]. Publications relevant to the present work are

brie¯y reviewed here. Mixed convection heat transfer

between vertical parallel plates has been studied by

many researchers [2±7]. Aung and Worku [2] show

that the hydrodymanic entry length ®rst increases

rapidly with Gr=Re and then approaches an asymptotic

value at large Gr=Re. Habchi and Acharya [5] ®nd

the local Nusselt number to increase with increasing

value Gr=Re2. Ingham et al. [7] present a numerical

method to treat the ¯ow reversal in buoyancy-assisting

and -opposing ¯ows. They predict poor heat transfer

when ¯ow is retarded by opposed buoyancy, but

at large and negative Gr=Re heat transfer is quite

e�ective.

In ¯ow with low Peclet number or high buoyancy

e�ect, ¯ow reversal may occur. Recently, this case was

studied for ¯ows between vertical parallel plates [8±11]

or in vertical tubes [12±14]. It appears that at low

Peclet number, the omission of axial di�usion terms in

the momentum and energy equations leads to serious

errors. However, at Pe > 50, the matching technique

used with the boundary-layer equations produces ac-

curate predictions of heat transfer along the heated

wall.

Analytical solutions of fully developed mixed con-

vection in vertical rectangular ducts with di�erent

heating conditions are presented by Igbal and Aggar-

wala [15] and Cheng and Weng [16]. They examined in

detail the physical conditions for ¯ow. In practice, the

¯ow typically remains in development for almost the
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full length of the duct, so a knowledge of the develop-

ing mixed convection is important. Cheng and Weng

[17] present relevant numerical results of developing

mixed convection heat transfer in vertical rectangular

ducts without consideration of the thermal radiation

e�ects.

Forced convection in a channel with radiation ef-

fect only (i.e., without thermal buoyancy) has been

examined by several investigators [18±24] during the

past thirty years for ducts with a prescribed heat ¯ux

or wall temperature distribution on the wall surfaces.

In these studies, various approximate methods were

used for radiative transport in the medium (the

¯owing ¯uid). Among these, the di�erential approxi-

mation methods describe approximation variation of

the intensity of radiation as function of position and

angle.

No numerical studies have been published of com-

bined convection and radiation in mixed convection

duct ¯ows. This motivates the present study. In ad-

dition, ¯ow is considered to be hydrodynamically

and thermally developing.

Nomenclature

a width of a square duct, m

f friction factor, 2sw=�qw2
o�

G;G� dimensional and dimensionless incident

radiation, G� � G=�4n2rT 4
w�

Gr Grashof number, gb�Tw ÿ To�a3=m2

h circumferentially averaged heat transfer

coe�cient, W=m2K

k thermal conductivity, W/m k

m;m0 direction of the discrete ordinates

M ;N number of ®nite di�erence divisions in the X

and Y directions, respectively

n direction coordinate normal to the duct wall

n refractive index

N � order of the phase function

Nc conduction-to-radiation parameter,

kj=�4n2rT 3
w�

Nuc connective Nusselt number

Nur radiative Nusselt number

Nut total Nusselt number, Nut � Nuc � Nur

p; P dimensional and dimensionless pressure,

respectively

p cross-sectional mean pressure, Pa

P dimensionless cross-sectional mean pressure

P 0 perturbation term about the mean pressure

P
Pe Peclet number, Pr � Re
Pn Legendre polynomial

Pr Prandtl number, m=a
~qc convective heat ¯ux

~qr radiation heat ¯ux

~qt total heat ¯ux
~Qr dimensionless radiation ¯ux

Ra Rayleigh number Pr � Gr
Re Reynolds number, woa=m
T temperature, K

u; v;w velocity components in x, y and z directions,

respectively, m/s

U ; V ;W dimensionless velocity components in X, Y

and Z directions, respectively

wo inlet mean velocity, m/s

x; y; z rectangular coordinate, m

X ; Y ; Z dimensionless rectangular coordinate,

X � x=a, Y � y=a, Z � z=�a � Re�
Z� dimensionless coordinate in the z direction,

Z� � Z=Pr
r� dimensionless gradient operator

Greek symbols

a thermal di�usivity, m2=s

b coe�cient of thermal expansion

j extinction coe�cient, mÿ1

jS scattering coe�cient, mÿ1

�w wall emissivity

h dimensionless temperature, T=Tw

ho dimensionless temperature ratio, To=Tw

l; g; f direction cosines

m kinematic viscosity, m2=s

n dimensionless vorticity in axial direction,

oU=oY ÿ oV =oX
q density, kg=m3

r Stefan±Boltzman constant, 5:67� 10ÿ8W=
m2 Kÿ4

s optical thickness

sw wall shear stress, kPa

w dimensionless radiation intensity,

pI=�n2rT 4
w�

/ scattering phase function

x single scattering albedo
~X; ~X0 outward and inward direction of radiation

X solid angle

Subscripts

b bulk ¯uid quantity

c convective

o condition at inlet

r radiative

w value at wall

Superscript

� averaged value
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2. Analysis

As a preliminary attempt to study thermal radiation

e�ects, ¯ow is assumed to be laminar. Practical ¯ows

are, of course, often turbulent. Accounting for turbu-

lence, however, greatly complicates the simulation. The

present work is thus a ®rst step.

Consider, therefore, steady laminar ¯ow through a

vertical square duct of width a and uniform wall Tem-

perature Tw. A uniform inlet axial velocity wo and a

uniform inlet temperature To are imposed at the entrance

z � 0. The u, v, and w are the velocity components in the

x, y, and z directions, respectively. To simplify analysis,

the ¯uid properties are taken to be constants expect for

the density variation in the buoyancy term of the mo-

mentum equation. The Boussinesq approximation is

invoked for the thermal buoyancy e�ect. The viscous

dissipation and compression e�ects in the energy equa-

tion are negligible due to low Mach number ¯ows. Ad-

ditionally, the gas is assumed to be gray, absorbing,

emitting, and scattering.

The ¯ow is treated as parabolic and a space-aver-

aged pressure p is imposed in the momentum equa-

tions to prevail at each cross-section, thus permitting a

decoupling from the pressure pm in the cross-stream

momentum equations. This ``pressure uncoupling''

follows the parabolic-¯ow practice and, together with

the assumption that neither momentum nor heat is

di�used in the axial direction (supported by an order

of magnitude analysis), permits a marching-integration

calculation procedure [25]. To conveniently present the

governing equations, the pressure p can be represented

as the sum of a cross-section mean pressure p�z�,
which drives the main ¯ow, and a perturbation about

the mean, p0�x; y; z�, which drives the cross-stream

¯ow,

p � p�z� � p0�x; y; z�: �1�

By introducing a vorticity function in the axial

direction, n � oU=oY ÿ oV =oX , the vorticity±velocity

formulation of Navier±Stokes equations is obtained:

o2U=oX 2 � o2U=oY 2 � on=oY ÿ o2W =oXoZ; �2�

o2V =oX 2 � o2V =oY 2 � ÿon=oX ÿ o2W =oY oZ; �3�

Uon=oX � V on=oY � W on=oZ � n�oU=oX � oV =oY �
� �oW =oY � oU=oZ ÿ oW =oX � oV =oZ�
� o2n=oX 2 � o2n=oY 2; �4�

UoW =oX � V oW =oY � W oW =oZ

� ÿdP=dZ � Ra=�Pr � Re� � �hÿ ho�=�1ÿ ho�
� o2W =oX 2 � o2W =oY 2; �5�

Uoh=oX � V oh=oY � W oh=oZ

� �o2h=oX 2 � o2h=oY 2 � �1ÿ x�s2=Nc

� �G� ÿ h4��=Pr: �6�
In the above formulation, the dimensionless groups are

de®ned as follows:

X � x=a; Y � y=a;
Z � z=�a � Re�; U � ua=m;
V � va=m; W � w=wo;

P � p=�qw2
o�; h � T=Tw;

ho � To=Tw; Re � woa=m;
Pr � m=a; Gr � gb�Tw ÿ To�a3=m2;

Nc � kj=�4n2rT 3
w�; s � ja;

x � jS=j; G� � G=�n2rT 4
w�;

Ra � Pr � Gr; Z� � Z=Pr:

�7�

The overall mass ¯ow rate at every axial location must

be balanced in the duct ¯ow, i.e.,Z 1

0

Z 1

0

W dX dY � 1: �8�

For the radiation part of this problem, we consider a

gray, absorbing and scattering medium. The radiation

transfer equation is given in the dimensionless form as

low=oX � gow=oY � sw

� �1ÿ x�sh4 � xs
4p

Z
X0�4p

/�~X0; ~X�w dX0; �9�

where the term ow=oZ is omitted under the assumption

of negligible axial radiation, i.e., oqrz=oZ � oqrx=oX �
oqry=oY . This assumption has been corroborated inde-

pendently by Echigo et al. [20] and Campo and Schuler

[23] who showed that the axial radiation penetrates one

or two diameters upstream of the origin of the heat

exchange section. In a dimensionless form, this pene-

trated distance is about Z� � 0:001 for the ¯ow with

Re � 2000 in this work. Therefore, the axial radiation is

discarded. In Eq. (9), w � pI=��n2rT 4
w� is the dimension-

less intensity of radiation at a point �X ; Y � in the di-

rection ~X de®ned by the direction cosines l; g, and f;x is

the single scattering albedo, and /�~X0; ~X� is the scatter-

ing phase function, which is expressed in terms of

Legendre polynomials as

/�~X0; ~X� �
XN�
n�0

anPn�l0l� g0g� f0f�: �10�

If the surface is assumed to be opaque, gray and di�usely

re¯ecting, the wall of boundary condition can be written

as

ww�~X� � �w � �1ÿ �w�
p

Z
~n�~X0<o

j~n � ~X0

j ww �~X0� dX0; ~n � ~X > 0; �11�
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where �w is the wall emissivity, and~n is the unit normal

vector pointing out of the duct wall into the medium.

Once the dimensionless radiation intensity w is

known, the dimensionless radiation ¯ux vector and in-

cident radiation are found from

~Qr �~qr=�4�n2rT 4
w� � �1=4p� �

Z
X�4p

~Xw dX; �12�

G� � G=�4�n2rT 4
w� � �1=4p� �

Z
X�4p

w dX: �13�

The boundary conditions for the convective governing

equations are

U � V � W � 0; h � 1 at the duct walls; �14�

W � 1; U � V � n � 0; h � ho at the entrance Z � 0:

�15�
After the velocity and temperature ®elds are ob-

tained, computation of the circumferentially averaged

friction factor and Nusselt number is of practical in-

terest. The dimensionless friction factor is

fRe � 2�oW =on�w: �16�
Energy transport from the duct wall to the gas ¯ow in

the presence of thermal radiation depends on two re-

lated factors: The ¯uid temperature gradient on the duct

wall and the rate of radiative heat exchange.

qt � qc � qr � ÿk�oT=on�w � qr: �17�
The local total Nusselt number Nut de®ned as

Nut � �ha=k � qta=�k�Tw ÿ Tb��; �18�
consists of both convection and radiation heat transfer

rates. It is written as

Nut � Nuc � Nur; �19�
where Nuc and Nur are respectively, the local convective

Nusselt number and radiative Nusselt number, and are

de®ned as

Nuc � ÿ�ohw=on�=�1ÿ hb� �20�
and

Nur � �s �Qr=Nc�=�1ÿ hb�; �21�
where the overbar means the circumferential average, Qr

is the dimensionless radiative hear ¯ux at the duct wall,

and the bulk temperature hb is

hb �
Z 1

0

Z 1

0

h � W dX dY : �22�

The parameters involved are the Prandtl number Pr, the

ratio of the Rayleigh to Reynolds numbers, Ra=Re,

the conduction-to-radiation Nc, the optical thickness s,

the scattering albedo x, the wall emissivity �w and tem-

perature ratio of inlet ¯uid and wall ho. The Ra=Re
measures the importance of the thermal buoyancy e�ects

relative to the inertia force. The conduction-to-radiation

parameter Nc characterizes the relative importance with

respect to radiation. The e�ect of radiation is getting

strong as Nc decreases. To reduce the computational

e�ort, the temperature ratio of inlet ¯uid and wall is ®xed

to be ho � 0:3 and the Prandtl number is set to be Pr �
0:7. E�ects of other parameters are examined in detail.

3. Solution method

The governing equations are solved numerically by

the vorticity±velocity method for three-dimensional

parabolic ¯ow [25,26]. For a given combination of

parameters, the ®eld solutions are calculated by a

marching technique based on the Du Fort±Frankel

scheme [27]. Details of the solution procedure have been

described elsewhere [25,26] and are not repeated herein.

In the present work, the radiative transfer equation is

solved by the discrete ordinates method with SN quadr-

ature [28±30]. The solid angle 4p is discretized over a

®nite number of directions, the radiative transfer equa-

tion is applied at these directions with the integral term

replaced by a quadrature. The discrete ordinates repre-

sentation of the radiative transfer equation is

lmowm=oX � gmowm=oY � swm

� �1ÿ x�sh4 � xs
4p

X
m0

w�m0/m0mwm0 ; �23�

where subscripts m and m0 represent the directions of the

discrete ordinates, and the w�m are the quadrature

weights. The associated boundary conditions are

wm � �w � �1ÿ �w�
p

X
m0

wm0 j lm0 j w�m0 ;

lm > 0; lm < 0; X � 0; �24�

wm � �w � �1ÿ �w�
p

X
m0

wm0 j lm0 j w�m0 ;

lm < 0; lm0 > 0; X � 1; �25�

wm � �w � �1ÿ �w�
p

X
m0

wm0 j lm0 j w�m0 ;

gm > 0; gm0 < 0; Y � 0; �26�

wm � �w � �1ÿ �w�
p

X
m0

wm0 j lm0 j w�m0 ;

gm < 0; gm0 < 0; Y � 1: �27�
The discrete form of the phase function /m0m is

/m0m �
XN�
n�0

anPn�lm0lm � gm0gm � fm0fm�: �28�
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The angular discretization transforms the integro-

di�erential radiative transfer equation into a set of

coupled partial di�erential equations. The discrete di-

rections and quadrature weights used in this work are

based on the momentum-matching technique [31], as

listed in Table 1. The total number of discrete directions

is 24 when the S6 scheme is employed for a two-dimen-

sional geometry.

To ensure the independence of the grid points used in

this work, a numerical experiment was made on the

grids in the cross-sectional plane (M � N ) and axial step

size �DZ��. In this study, grids were arranged to be

uniform in the cross-sectional direction but non-uni-

formly distributed in the axial direction for the uneven

variations of ®eld properties in the entrance region. It is

found, Table 2, that the deviations in local total Nusselt

number Nut calculated with M � N � 51� 51 and

81� 81�DZ� � 1� 10ÿ5±5� 10ÿ4� are always less than

2% for Ra=Re � 100; Nc � 0:05; s � 1;x � 0 and

�w � 0:5. Furthermore, the deviations in Nut calculated

using M �N �DZ�� � 51� 51 �DZ� � 1� 10ÿ6±5� 10ÿ4�
and 51� 51 �DZ� � 1� 10ÿ5±5� 10ÿ4� are all less than

2%. Accordingly, the computations involving a M � N
�DZ�� � 51� 51 �DZ� � 1� 10ÿ5±5� 10ÿ4� grid are

considered to be su�ciently accurate to describe the ¯ow

and heat transfer in a vertical square duct. All the results

presented in the next section are computed using the

latter grid. As a partial veri®cation of the computational

procedure, results were initially obtained for convection

heat transfer in a vertical square duct without thermal

radiation e�ect and compared with those of Cheng and

Weng [17]. The Nusselt number and friction factor were

found to agree within 2%. Through these numerical

tests, the present numerical scheme was suitable for the

present problem.

4. Results and discussion

The developing axial velocity pro®les along the cen-

terlien X � 0:5 at various conditions are shown in Fig. 1,

where curves A, B, C, D, and E denote pro®les at

Z� � 0:001; 0:01; 0:05; 0:1; and 0.3, respectively. For

comparison, the results without thermal radiation e�ect

are also included in Fig. 1, as indicated by the dashed

lines. It should be mentioned that the uniform velocity

at the entrance Z � 0 corresponds to W � 1 in these

subplots. In the absence of buoyancy [see Fig. 1(b)], the

W pro®les change along the duct axis, beginning with a

square shape at Z � 0 and ®nally taking a parabolic

shape further downstream. Therefore, maximum veloc-

ity always occurs at the centerline of Y � 0:5. Once

buoyancy is initiated, the W pro®les may shift towards

the duct walls (Y � 0 and 1), especially for the curves

without radiation e�ect. Near the entrance (curve A),

the velocity pro®le is fairly uniform over the cross-sec-

tion. As the ¯ow develops, the velocity in the core region

is accelerated due to the entrance e�ect. Further down-

stream, the velocity pro®le becomes distorted with the

maximum velocity towards the duct walls (curve C).

Table 1

The discrete directions and quadrature weights for the S6 method (one octant only)

m lm gm fm w�m

1 0.948235 0.224556 0.224556 p=6

2 0.689048 0.689048 0.224556 p=6

3 0.224556 0.948235 0.224556 p=6

4 0.689048 0.224556 0.689048 p=6

5 0.224556 0.689048 0.689048 p=6

6 0.224556 0.224556 0.948235 p=6

Table 2

Comparisons of local Nut for various grid arrangements for Ra=Re � 100;Nc � 0:05; s � 1;x � 0; �w � 0:5 and ho � 0:3

M � N Z�

(DZ�)
0.001 0.005 0.01 0.05 0.1 0.3

51� 51 15.528 9.533 8.274 8.460 8.787 8.398

�1� 10ÿ5±5� 10ÿ4�
81� 81 15.232 9.428 8.275 8.456 8.732 8.408

�1� 10ÿ5±5� 10ÿ4�
51� 51 15.640 9.397 8.275 8.464 8.787 8.463

�1� 10ÿ6±5� 10ÿ4�
31� 31 17.241 9.484 8.265 8.442 8.790 8.608

�1� 10ÿ5±5� 10ÿ4�
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Finally, the velocity pro®les become parabolic when the

¯ow is fully developed. But as the radiation e�ect is

taken into account (shown by the solid curves), the

radiation tends to reduce the buoyancy e�ects. There-

fore, the extent of the velocity shifting towards the walls

becomes less signi®cant, especially for stronger radiation

cases (e.g., smaller Nc or larger s). This can be under-

stood by recognizing that the radiative heat ¯ux is an

additional mode of energy transport that causes a ¯atter

temperature distribution. This world cause a small

buoyancy e�ect. A close inspection of the solid and

dashed curves discloses that the radiation e�ect tends to

reduce W near the walls �Y � 0 and Y � 1�. This implies

that the results with radiation would reduce the friction

factor.

Plotted in Fig. 2 are the temperature pro®les at dif-

ferent axial locations, with the same legends as Fig. 1. In

line with the wall heating, the temperature in the central

portion of the duct increases gradually as the ¯ow moves

downstream. A comparison of the temperature pro®les

with and without radiation reveals that near the inlet the

e�ect of radiation on the thermal development is insig-

ni®cant. But at the downstream location, radiation e�ect

tends to equalize the temperature in the ¯ow. A close

inspection of Fig. 2(a) and (c) shows that as the con-

dition-to-radiation parameter Nc decreases, the h becomes

¯atter. Additionally, the development of temperature

pro®le is faster for a system with a stronger radiation

e�ect (Nc � 0:02). This can be understood by recogniz-

ing that the radiative heat ¯ux is an additional mode of

energy transport and as the magnitude of Nc decreases,

the importance of the radiation term in Eq. (6) increases,

relative to the conduction and convection. This causes

an increase of the energy transport which leads to ¯atter

temperature pro®les. Similar result is also found for the

case with a large s.

The e�ects of the ratio of Rayleigh number to

Reynolds number Ra=Re and conduction-to-radiation

parameter Nc on the axial variations of bulk tempera-

ture hb are presented in Fig. 3. For comparison pur-

poses, the results without thermal radiation e�ect are

also plotted in Fig. 3, as shown by the dashed lines. It is

clear that due to the stronger buoyancy e�ects, the

development of bulk temperature is quicker for a sys-

Fig. 2. Development of temperature pro®les for di�erent con-

ditions: A: Z� � 0:001, B: Z� � 0:01, C: Z� � 0:05, D: Z� � 0:1

and E: Z� � 0:3.

Fig. 1. Development of axial velocity pro®les for di�erent

conditions: A: Z� � 0:001, B: Z� � 0:01, C: Z� � 0:05, D: Z� �
0:1, and E: Z� � 0:3.
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tem with a larger Ra=Re. In addition, the hb is found to

be essentially the same as that without radiation when

the radiation-convection interaction is weak, such as for

the curve of Nc � 1. However, when the interaction is

intense �Nc � 0:02�, there is an essential di�erence. In

contrast to the case without radiation, the radiation

augments the rate of thermal development so that the

hb approaches the wall temperature �h � 1� at a more

rapid rate.

The e�ects of the conduction-to-radiation parameter

Nc on the axial variations of local friction factor and

Nusselt number are presented in Fig. 4. In Fig. 4, the

total Nusselt number Nut with radiation is larger than

that without radiation. This is due to two e�ects. The

®rst is that radiation is an additional mechanism for heat

transfer through the ¯uid, resulting in an increased heat

¯ux. Secondly, the radiation source term augments the

rate of thermal development so that the bulk tempera-

ture approaches the wall temperature at a more rapid

rate. Both e�ects act to increase the local total Nusselt

number Nut. Near the entrance, the Nut is raised only by

the additional radiative heat ¯ux, while further down-

stream, the more rapid thermal development contributes

when the bulk temperature approaches the wall tem-

perature. An overall inspection of Fig. 4 reveals that

near the entrance, the local fRe fades away monotoni-

cally due to the entrance e�ect. And at these positions,

the convective e�ect is predominant. Therefore, the ef-

fects of Nc on the local fRe are insigni®cant. But as the

¯ow proceeds downstream, the radiation e�ect becomes

important. The fRe decreases with a decrease in Nc. This

is due to the fact that in the presence of radiation, the

temperature ®eld becomes ¯atter, as shown in Fig. 2.

The buoyancy-assisting e�ect is thus reduced, which in

turn, causes a reduction in fRe further downstream. But

this is not the case with the local Nut. At downstream

region, the Nut increases with a decrease in Nc due to the

strong radiation e�ect.

The optical thickness s is another important factor

which a�ects the heat transfer and ¯uid ¯ow. Fig. 5

shows the e�ects of optical thickness s on the local fRe
and Nut. When s is very small, the medium is almost

transparent. Thus, it does not absorb and emit much

energy. A large s corresponds to a strong radiatively

participating medium. It is easy to see that there is more

heat released from such a medium than from a weak

radiatively participating medium. Thus, the local Nut

increases with an increases in s. Additionally, the

Fig. 4. E�ects of Nc on the variation of the friction factor and

the Nusselt number for Ra=Re � 100, s � 1; x � 0 and

�w � 0:5.

Fig. 3. E�ects of Ra=Re and Nc on the axial variation of the

bulk temperature hb for s � 1; x � 0 and �w � 0:5.

W.-M. Yan, H.-Y. Li / International Journal of Heat and Mass Transfer 44 (2001) 1401±1410 1407



radiation has a stronger e�ect on the local fRe and Nut

for a system with a larger s, as compared with the results

of no radiation.

In many applications, scattering processes are im-

portant in radiative heat transfer if particulates are

present in the ¯uid. Therefore, the e�ects of the single

scattering albedo on the ¯uid ¯ow and heat transfer are

of interest. For illustration, the scattering is assumed to

be isotropic. Fig. 6 demonstrates the in¯uence of scat-

tering albedo x on the local fRe and Nut distributions.

The Nut decreases with the increasing single scattering

albedo x. This is expected, since as the scattering albedo

x approaches zero, the emission and absorption of en-

ergy within the medium dominate. As the scattering

albedo x approaches unity, scattering dominates and

causes a small Nut. Like the results in Fig. 5(a), the local

fRe is attenuated due to the radiation e�ect in the

downstream region.

The e�ects of wall emissivity �w on the local fRe and

Nut are shown in Fig. 7. It is apparent that the local Nut

without radiation is lower than that with radiation.

Additionally, the local Nut increases with the increasing

emissivity of the duct wall. Naturally, heat transfer is

maximum for a black duct (i.e., �w � 1�. It is also

found that the stronger the radiation e�ect, the smaller

the fRe.

In the conditions of high wall-to-coolant temperature

di�erences, buoyancy may play a very critical role in the

¯ow and heat transfer mechanism. Hence, it is interest-

ing to examine its in¯uence on the ¯ow and heat

transfer. Fig. 8 shows the e�ects of the Ra=Re on the

local fRe and Nut for Nc � 0:05; s � 1; x � 0 and

�w � 0:5. Positive Ra=Re indicates a buoyancy-assisting

¯ow, while negative Ra=Re means a buoyancy-opposing

¯ow. It is obvious that the buoyancy-assisting e�ect in-

creases the fRe and Nut as compared with the results of

buoyancy-free case �Ra=Re � 0�, and the extent of in-

crease in Nut increases with the magnitude of Ra=Re. But

for the case of negative Ra=Re, the opposing buoyancy

decreases the local fRe and Nut. Additionally, relative to

the results without radiation, the radiation e�ect would

decrease the local fRe for the buoyancy-assisting case.

But for buoyancy-opposing ¯ow, the presence of ra-

diation would enhance the local fRe. These are due to

the fact that the radiation tends to reduce the buoyancy

e�ects.

Fig. 6. E�ects of x on the variation of the friction factor and

the Nusselt number for Ra=Re � 100, Nc � 0:05; s � 1 and

�w � 0:5.

Fig. 5. E�ects of s on the variation of the friction factor and the

Nusselt number for Ra=Re � 100, Nc � 0:05; x � 0 and

�w � 0:5.
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5. Conclusions

In the present work, the problem of mixed convec-

tion ¯ow and heat transfer in a vertical square duct with

consideration of thermal radiation has been studied

numerically. A novel vorticity±velocity method suc-

cessively solved the three-dimensional parabolic govern-

ing equations. The radiative transfer equation was

solved by the discrete ordinates method. The e�ects of

the Rayleigh number-to-Reynolds number parameter

Ra=Re, conduction-to-radiation parameter Nc, optical

thickness s, single scattering albedo x and wall emis-

sivity �w on the ¯ow and heat transfer are examined in

detail. What follows is a brief summary.

1. In the presence of radiation, the thermal development

develops at a more rapid rate relative to that without

radiation.

2. The local friction factor fRe and Nusselt number Nut

are enhanced with an increase in the magnitude of

Ra=Re for buoyancy-assisting case.

3. The local total Nusselt number Nut is augmented by

the radiation e�ects. The fRe is reduced (increased)

for the buoyancy-assisting (opposing) ¯ow as the

thermal radiation e�ect is taken into account.

4. In contrast to the results without radiation, radiation

e�ects augment the Nut. And the extent of enhance-

ment in Nut increases with a decrease (increase) in

Nc or x �s or �w�.
5. The laminar case is treated in this work and intended

to provide a ®rst step towards future work which will

investigate the radiation e�ects on turbulent mixed

convection in vertical ducts.
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